Chemistry 1B Fall 2016

sessions 5-6 Chapter 12 pp. 557-569 *(569-571)

1

What can you do to become famous?

[and win a cool \$1.2 million]?]

STUDY QUANTUM MECHANICS

Nobelpriset 2013

The Nobel Prize in Chemistry 2013

Martin Karplus Université de Strasbourg, France and Harvard University, Cambridge, MA, USA

Michael Levitt Stanford University School of Medicine, CA, USA

The Nobel

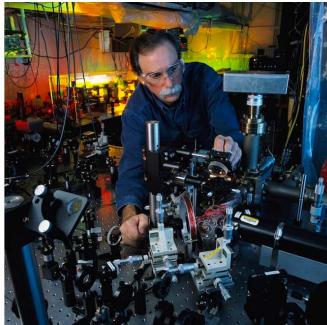
Arieh Warshel University of Southern California, Los Angeles, CA, USA

"För utvecklandet av flerskalemodeller för komplexa kemiska system."

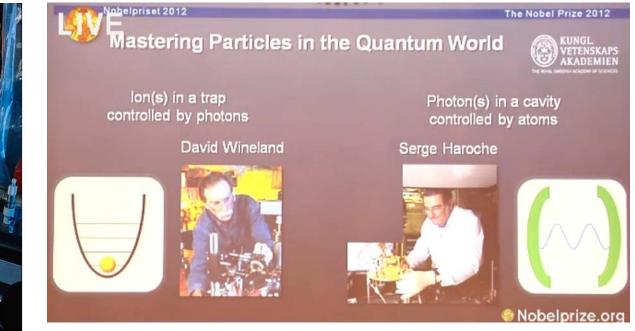
When scientists wanted to simulate complex chemical processes on computers, they used to have to choose between software that was based on classical Newtownian

physics or ones based on **QUANTUM** physics. But the academy said the three laureates developed computer models that "opened a gate between these two worlds."

Molecular Mechanics at UCSC



Prof Ilan Benjamin Prof. Yuan Ping


2012 Nobel in QUANTUM physics

Nobel Awarded to Scientists Who Learned to Control Quantum Systems

By ScienceNow 🖾 October 9, 2012 | 2:41 pm | Categories: Physics

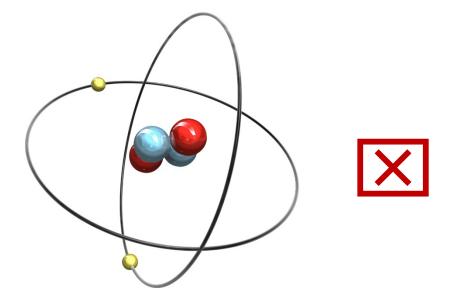
NIST physicist David Wineland, one of the Nobel Prize in Physics winners for 2012, manipulates single atoms in an experiment. Copyright Geoffrey Wheeler

- electron spin, "the 4th quantum number and the Pauli exclusion principle
- effective nuclear charge, Z_{eff}
 the "net" attraction for an electron in a many-electron atom
- knowledge of the principal quantum number (n) and Z_{eff} for and atom's valence electrons leads to an understanding of:

• Hund's Rule and electron configuration in many-electron atoms the Aufbau Principle

 how does increased atomic number (Z) and the presence of other electrons affect orbital energies?

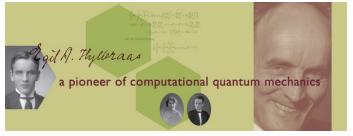
• how does one "fill up" the available orbitals in many-electron atoms


Chemistry IB - AL

multi-electron atoms

Electron Spín

Electronic Configurations


did the Schrodinger equation "work" for helium ??

$\mathcal{H}_{\text{helium}}\Psi = \mathbf{E}_{\text{helium}}\Psi$???

Although the Schrödinger equation, $\mathcal{H}\Psi=E\Psi$, for polyelectronic atoms (and molecules) cannot be solved exactly (mathematically)

Numerical computer calculations give solutions that **agree perfectly with experiment** ✓

Year	Quantal/Experimental Method		-E
1924 1998	experimental, Lyman (1924) exp., Bergeson <i>et al.</i> (1998)	ехр	2.9035 2.903 693 775
1929	var., 38 param., Hylleraas (1929)		2.9037
1993	relativ. Drake (1993)	calc	2.903 700 023

but solutions are very complex .

 $\Psi(s, u, t) = \mathcal{N}e^{-(1/2)s} \sum_{i,m,n} C_{i,m,n} s^{i-m} u^{m-n} t^n.$ (2)

so- We can (and will!!) use the hydrogen-like orbitals as a very good approximation to the exact solutions of the Schrödinger equation for manyelectron atoms.

this video

- electron spin, "the 4th quantum number and the Pauli exclusion principle
- effective nuclear charge, Z_{eff} the "net" attraction for an electron in a many-electron atom

in next class

 knowledge of the principal quantum number (n) and Z_{eff} for and atom's valence electrons leads to an understanding of:

• Hund's Rule and electron configuration in many-electron atoms the Aufbau Principle

worksheet III sections I.1-2 and II.1-3

Chemistry 1B-AL Fall 2016, Study Guide and Worksheet III

Learning Objectives and Worksheet III

Chemistry 1B-AL Fall 2016

Lectures (5-6) Many Electron Atoms and the Aufbau Principle

Read pp. 557-569 (you will not be responsible for the material on pp-569-571; however the CHEM1B-AL staff would be more than happy to discuss these concepts with you)

Atomic orbital APPROXIMATION

To describe the electronic structure of atoms we will be using a model that is an approximation to the actual (exact) solutions to the Schrödinger equation. In this model the many-electron wavefunction is 'built' up by placing electrons into 'hydrogen-like' atomic orbitals.

- I. Pauli Exclusion Principle (PEP)
 - 1. What did the Stern-Gerlach experiment indicate?

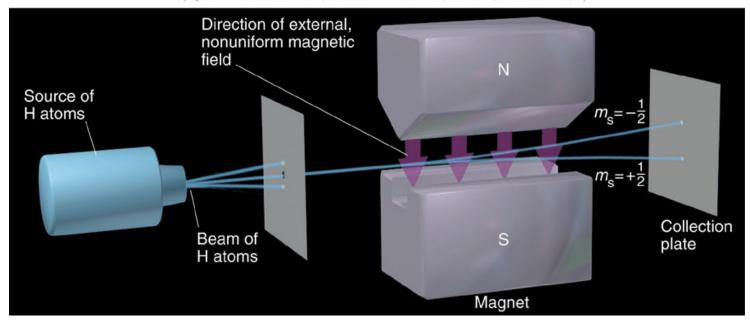
2. What is Pauli Exclusion Principle as related to allowed orbital occupancy?

Addition information on Stern-Gerlach and electron 'spin' (University of Toronto): http://www.upscale.utoronto.ca/GeneralInterest/Harrison/SternGerlach/SternGerlach.html

- II. Energies of orbitals In many-electron atoms
 - 1. In the hydrogen atom, and for all 1-electron ions, the energy of an electron in an orbital with

quantum numbers n, ℓ , m_{ℓ}, m_z is given by $E_n = -\frac{m_e \ell^4}{8\hbar^2 \varepsilon_0^2} \frac{Z^2}{n^2} = -(2.18 \times 10^{-18} \text{ J}) \frac{Z^2}{n^2}$. For

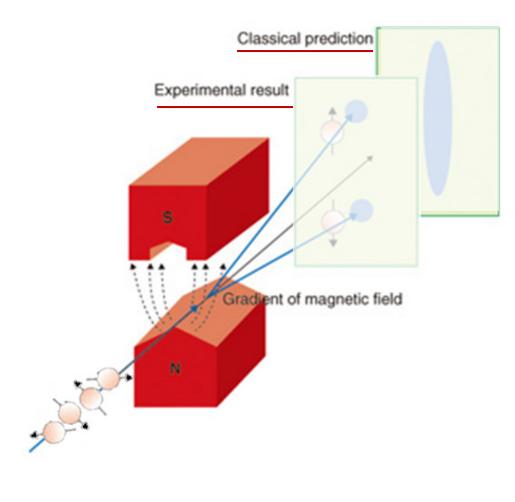
the energy of an electron in a many electron atom the nuclear charge Z is replaced by ______ which takes into account both Z, the ______

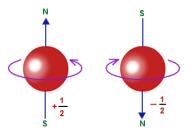

of the nucleus, and the repulsion (σ=shielding of nuclear charge) of the _____

In a helium atom Z_{eff} for an electron will be ______ the +2 charge on the nucleus.

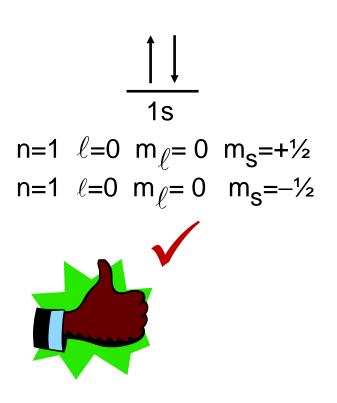
2. In a helium	atom Z _{eff} for an electron will be	the +2 charge on the nucleus.
	1	
	Chemistry 1B-AL	Fall 2016, Study Guide and Worksheet III
-	d state of the Li atom has configuration er (less negative) energy both because	The electron in the 2s orbital

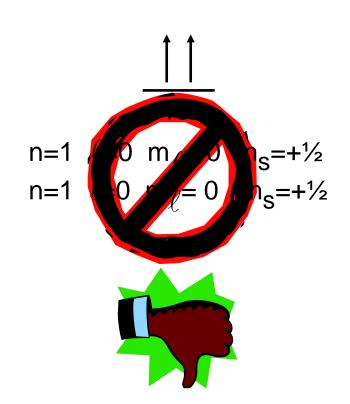
• Stern-Gerlach experiment (fig. 8-1 Silberberg)


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



https://quantumreality.net/2015/11/03/the-sterngerlach-experiment/


https://www.nttreview.jp/archive/ntttechnical.php? contents=ntr201209fa4_s.html the electron has two possible spin states with spin quantum numbers m_s=+¹/₂ or m_s=-¹/₂


spin up and spin down

http://www.quantum-fieldtheory.net/discovery-electron-spin/ Pauli exclusion principle (PEP) (sec 12.10)

no two electrons can have the same four quantum numbers:

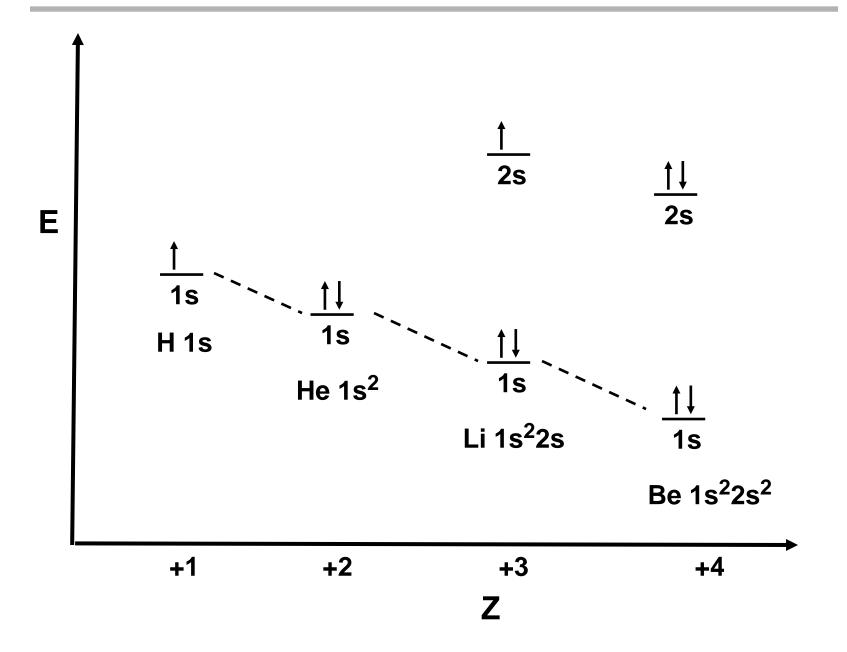
He, Li, Be, B, C, N, O, F, Ne

• greater nuclear charge (Z) than hydrogen (Z=1)

• more electrons than hydrogen (one-electron)

- Quantum mechanics describes many-electron atoms by filling hydrogen-like orbitals with the atom's electrons in a manner consistent with the Pauli Exclusion Principle.
- This description allows us to understand the **energies** of electrons in atoms and ions, the **relative sizes** of atoms and ions, and the **chemical reactivity** and other properties of various elements.

R		sentative ments		d-Transition Elements									Representative Elements					
	1A 181	Group numbers																8/ ns ² n
	1 H Ls ¹	2A 115 ²											3A ns ² ap ¹	4A 113 ² 102 ²	5A _{ns²np³}	6А ^{яз2ар4}	7A 111271111	2 H 13
	3 Li 281	4 Be 2s ²											5 B 2s ² 2p ¹	6 C 2s ² 2p ²	7 N 2s ² 2p ³	8 O 2s ² 2p ⁴	9 F 2s ² 2p ⁵	10 N 2s ² 2
1	11 Na 361	12 Mg 3s ²			J	7	(-		13 Al	14 Si _{3s²3p²}	3s p3	3. p ⁴	3 p ⁵	11 A 34 ² 3
3	19 K 41	20 Ca 45 ²	21 Sc 4s ² 3d ¹	22 Ti 4s ² 3d ²	23 V 4s ² 3d ³	24 Cr 4s ^{13d5}	Mn 4s ² 3d ⁶	26 E 4s23d6	27 Ca 4s ² 3d ⁷	28 N 4s ² 3d ⁸	29 4s13d10	2 4s ² 3d ¹⁰	3 Gr 4s ^{24p1}	32 Ge 4s ^{24p²}	33 • 4s ^{24p³}	34 • 4s ^{24p⁴}	35 • 4s ^{24p5}	34 K 45 ²⁴
1	37 Rb 5t ¹	38 Sr 55 ²	39 Y 5s ^{24d1}	40 Zr 5s ² 4d ²	41 Nb 5514d4	42 Mo 5s14d5	43 Tc 5s ^{14d6}	44 Ru 5s14d7	45 Rh 5s14d8	46 Pd 4d ¹⁰	47 Ag 5s14d10	48 Cd 5s ^{24d10}	49 In 55 ² 5p ¹	50 Sn 5s ² 5p ²	51 Sb 5s ² 5p ³	52 Te 55 ² 5p ⁴	53 I 5s ^{25p⁵}	54 X 5425
	55 Cs 601	56 Ba 692	57 La [#] 6s ² 5d ¹	72 Hf 4/146s25sf2	73 Ta 6s²5d3	74 W 6s ² 5d ⁴	75 Re 6425d ⁶	76 Os 6x25d6	77 Ir 6s ² 3d ⁷	78 Pt 6s15d9	79 Au 6w15d10	80 Hg 6s ² 5d ¹⁰	81 Tl 6x26p1	82 Pb 6s ² 6p ²	83 Bi 6s ² 6p ³	84 Po 6s ² 6p ⁴	85 At 6s ² 6p ⁵	80 Ri 6626
1	87 Fr 751	88 Ra 75 ²	89 Ac** 7s26d1	104 Rf _{7s²6d²}	105 Db 7s ² 6d ³	106 Sg 7s ²⁶ d ⁴	107 Bh 7s26s9	108 Hs 7s ² 6d ⁶	109 Mt 7s26al7	110 Ds 7s ² 6d ⁸	111 Uuu 75 ^{16d10}	112 Uub 7x26x110		114 Uuq _{7s²7p²}				

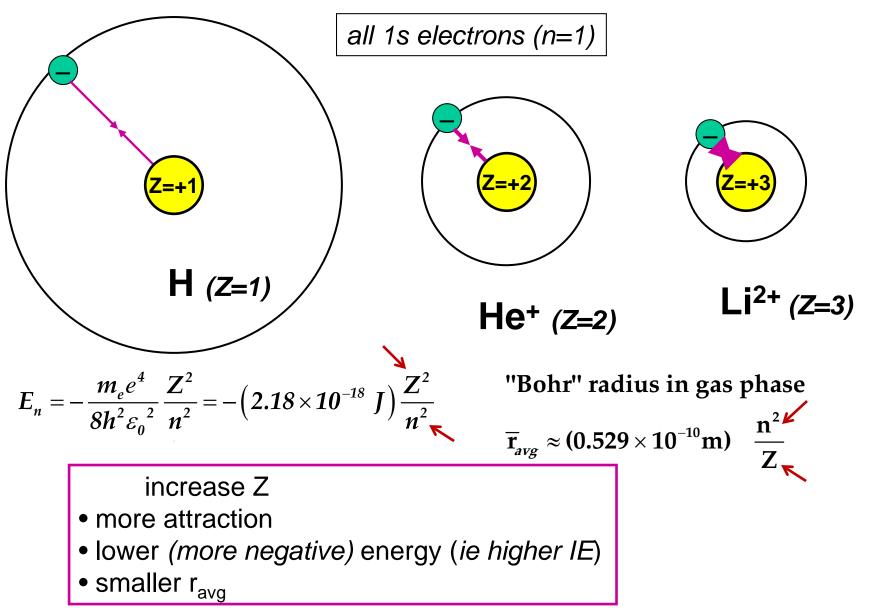

f-Transition Elements

	~													
*Lanthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	6s24s15d1	6124135d0	6s ² 4j ⁴⁵ d ⁰	6s24/55f0	6s24965d0	6s24f75d0	6s24/75d1	6424/95:00	6424/105d0	6/24/115/9	6s24/125d0	6324/13540	6s ^{24f145d9}	6s ² 4/145d ¹
**Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	7s ² 5/°6d ²	7s ² 5f ² 6d ¹	7s²\$f36d1	7s25f46d1	7s ² 5/66d ⁰	7s ² 5y ⁷ 6d ⁰	7s ² 5f ² 6d ¹	7s25f96d9	7 <i>s</i> 25/106d ¹	7s25f116dP	7s ² 5/ ¹² 6d ⁰	7s²5f136d0	7s ² 5/146a ⁰	7s ² 3/ ¹⁴ 6/ ¹

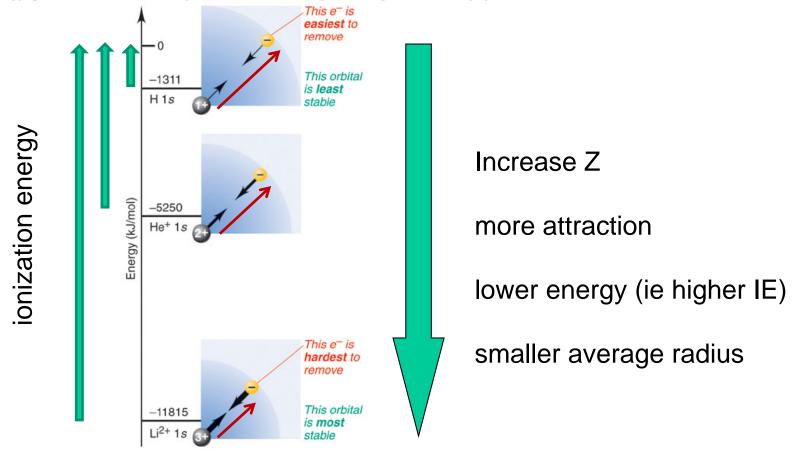
©Houghton Mifflin Company. All rights reserved.

electronic configuration: specification of which orbitals the electrons occupy in an atom (or molecule) [*and possibly the spins of electrons*]

configurations (for 1s and 2s levels) ground states (preview)



 Dependence of energy and average radius of electron in a hydrogen orbital on: n and Z


$$E_{n} = -\frac{m_{e}e^{4}}{8h^{2}\varepsilon_{0}^{2}} \frac{Z^{2}}{n^{2}} = -(2.18 \times 10^{-18} J) \frac{Z^{2}}{n^{2}}$$
$$\overline{r} \approx (5.29 \times 10^{-11} m) \frac{n^{2}}{Z}$$

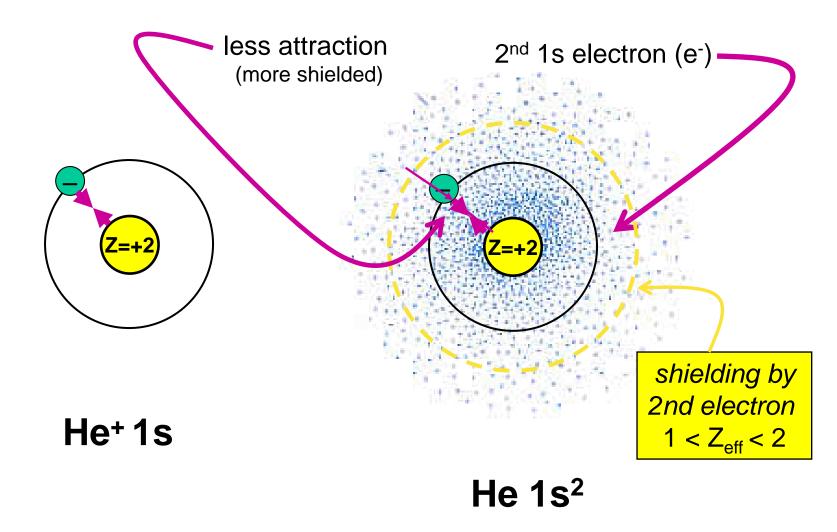
 Holds EXACTLY for 1-electon atoms and ions: H, He⁺, Li²⁺, Be³⁺, ... Here Z is "regular" nuclear charge with Z=1, 2, 3, 4, ionization energy (section problem (HW2 #11, S3)

- ionization energy (IE) : the energy required to remove an electron from an atom, ion, or molecule in the gas phase
- X (g) + IE I X⁺(g) +e^I (absorbs energy IE: endothermic, + sign for IE)
- IE_n for state n is energy difference between state n and state $n \rightarrow D$ $(I.E.)_n = (E_{\infty} - E_n) = -E_n = +(2.18 \times 10^{-18} J) \frac{Z^2}{n^2}$
- similar to the work function Φ in the photoelectric effect, except IE refers to gas phase ionization where Φ refers to removal of electron from the solid

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

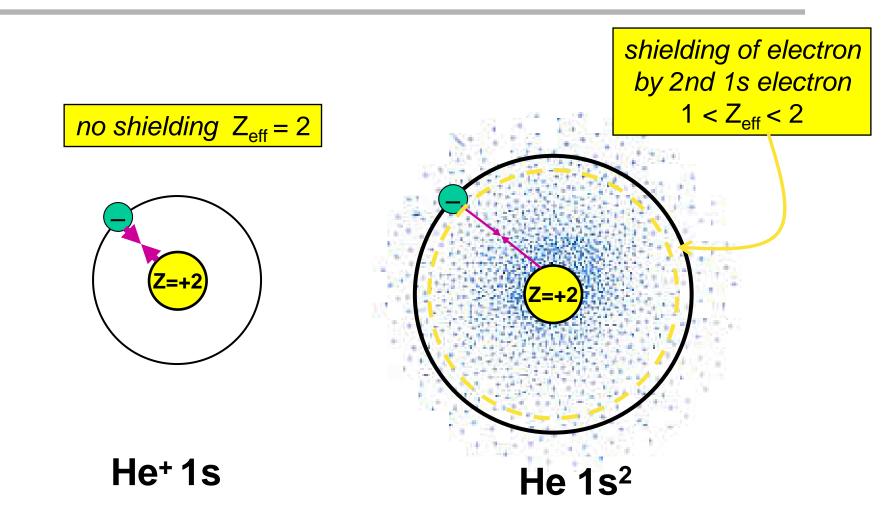
Important Factoids in Understanding Effective Nuclear Charge

• Energy dependence on n and Z_{eff}

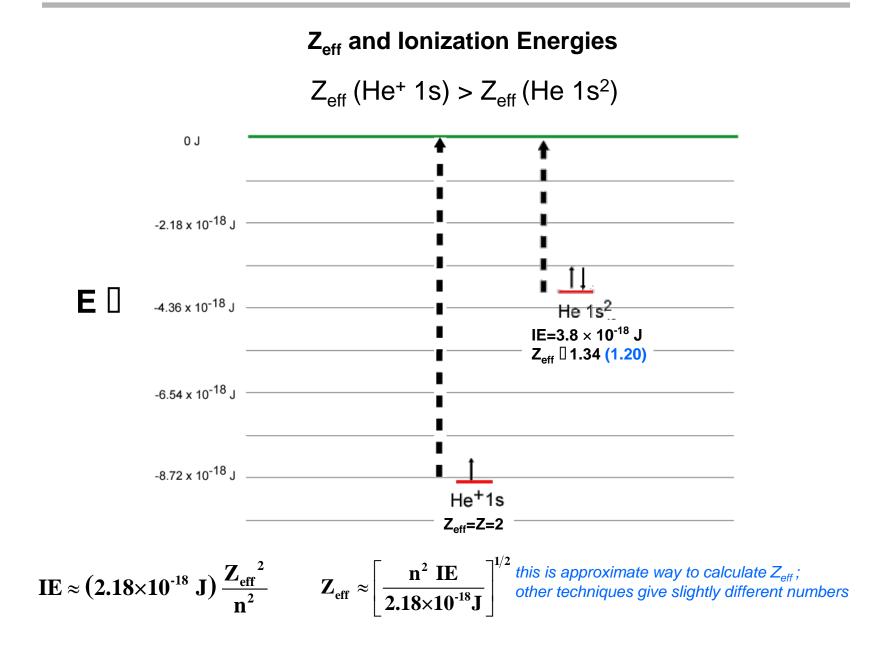

$$E_n \approx -(2.18 \times 10^{-18} \text{ J}) \frac{Z_{\text{eff}}^2}{n^2}$$

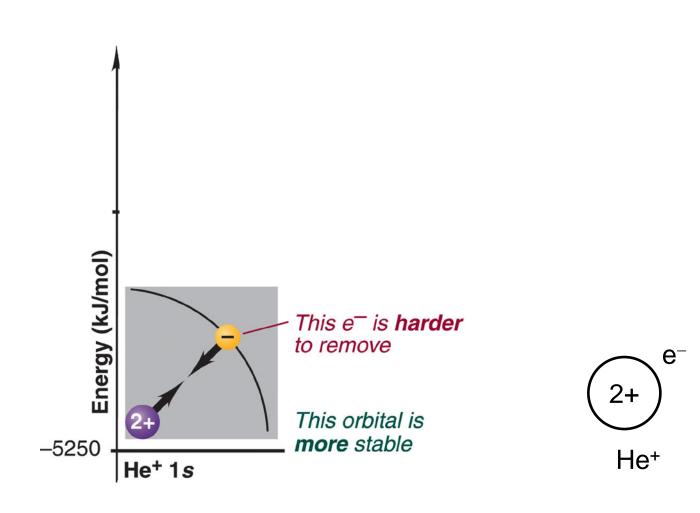
• Z_{eff} and shielding (attraction-repulsion) $Z_{eff} = Z - (effect of electron repulsions)$ $Z_{eff} = Z - (shielding of other electrons)$

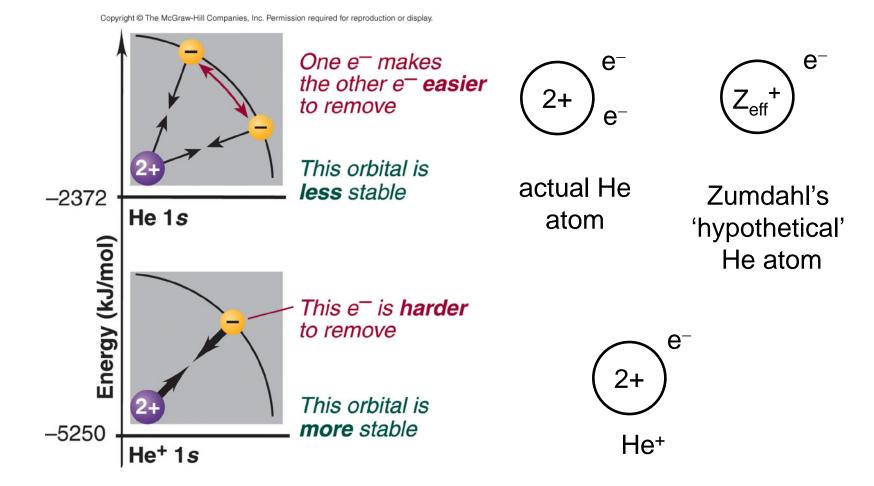
1s electron 'feels' full Z = +2 nuclear attraction


• electrons in same shell: He 1s vs He 1s²

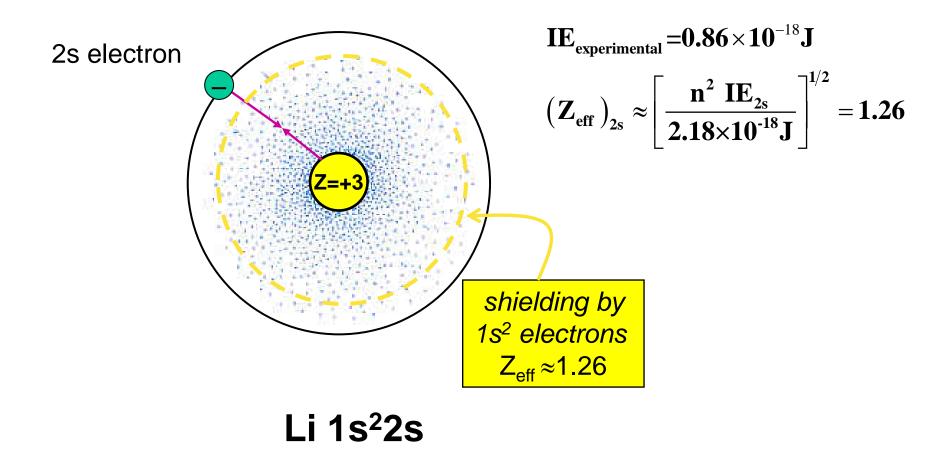
the two 1s electrons shield one another from the Z=+2 nuclear pull


more shielding \rightarrow lower $Z_{eff} \rightarrow$ larger average radius

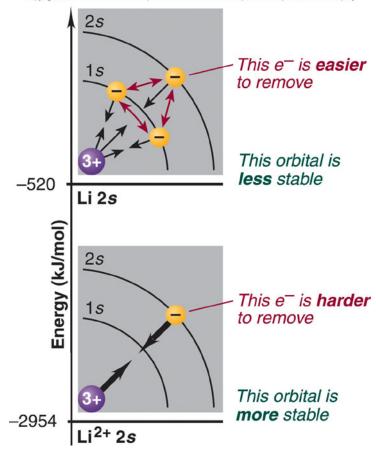

He+ vs He (what net positive charge does a 1s electron 'see' ?)


lower $Z_{eff} \rightarrow$ larger average radius lower $Z_{eff} \rightarrow$ lower attractive forces

Energy of He $1s^2$ vs He⁺ 1s (HO fig 12.2)



Silberberg figure 8.4A: energy of He 1s² vs He⁺ 1s (same shell shielding) Zumdahl (p. 556-8) [558-559]_{7th}



what about shielding if the electrons are in different shells $Li^{2+} 2s vs Li(1s^2) 2s$ shielding the 2s electron

would you expect electrons in an inner shell to provide less or greater shielding effects than electrons in the same shell ?

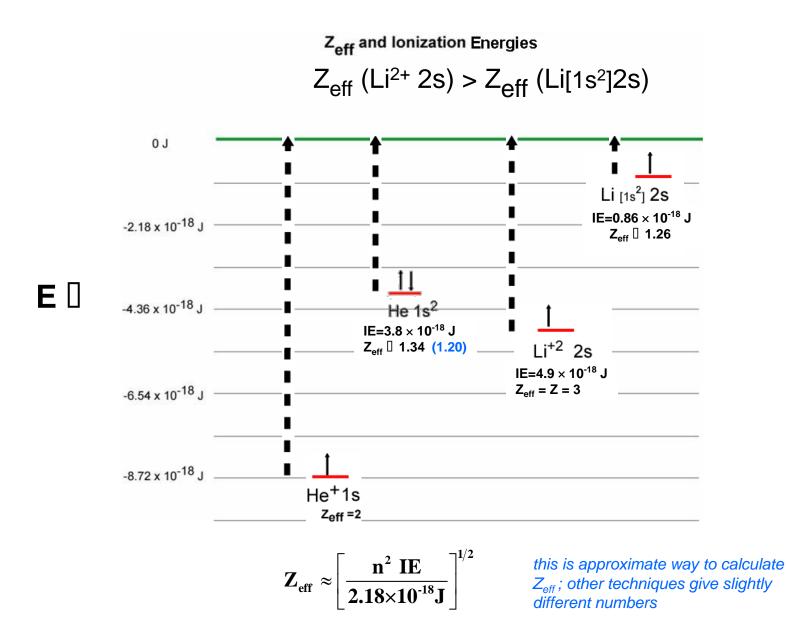
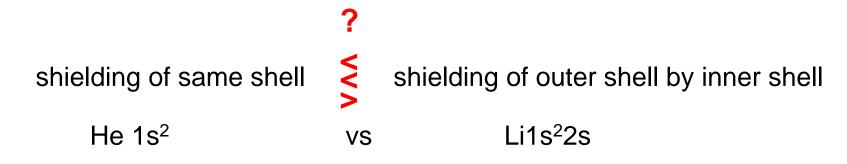


figure 8.4 B (Silb) shielding by inner shell electrons



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Energy of Li²⁺ 2s vs Li [1s²] 2s (HO Fig. 12.3)

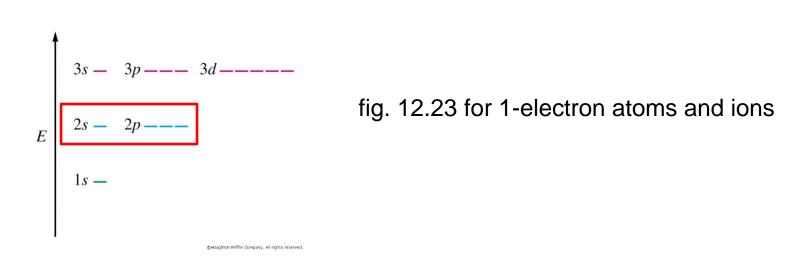
how would one expect the shielding of 1s electron for another 1s electron [same shell] to compare to the shielding of a 1s electron for a 2s electron [different shells] ?

How so ? $[Z_{eff}=Z_{nucleus}-shielding of other electrons]$

He : $Z_{eff}(1s) \approx 1.34 = +2 - \text{shielding of other 1s electron}$ shielding of other 1s electron = **0.66**

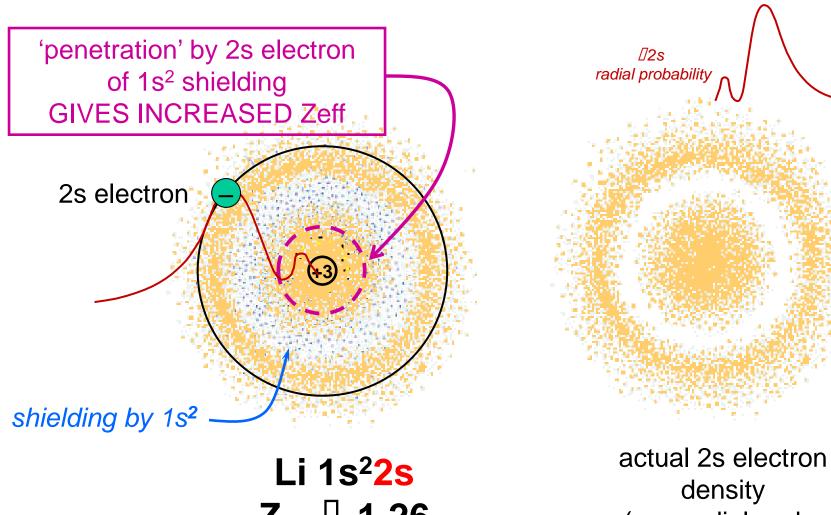
Li: $Z_{eff}(2s) \approx 1.26 = +3 - \text{shielding of two 1s electrons}$

shielding of each inner shell 1s electron $=\frac{1.74}{2}=0.87$

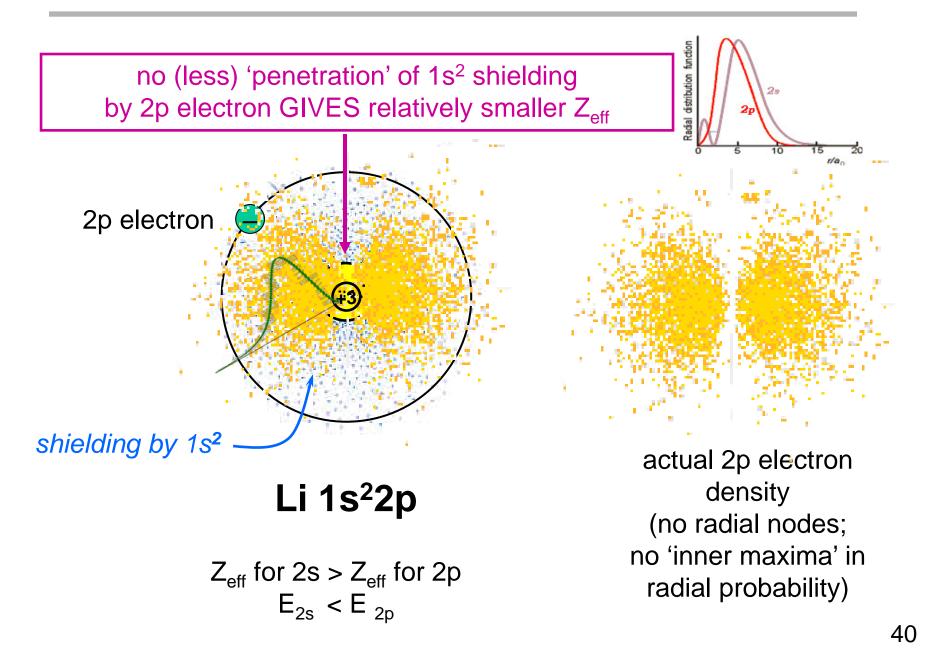


http://www.tunnel.ru/i/post/350182/3501828039/2063662981/at9 48236225.gif

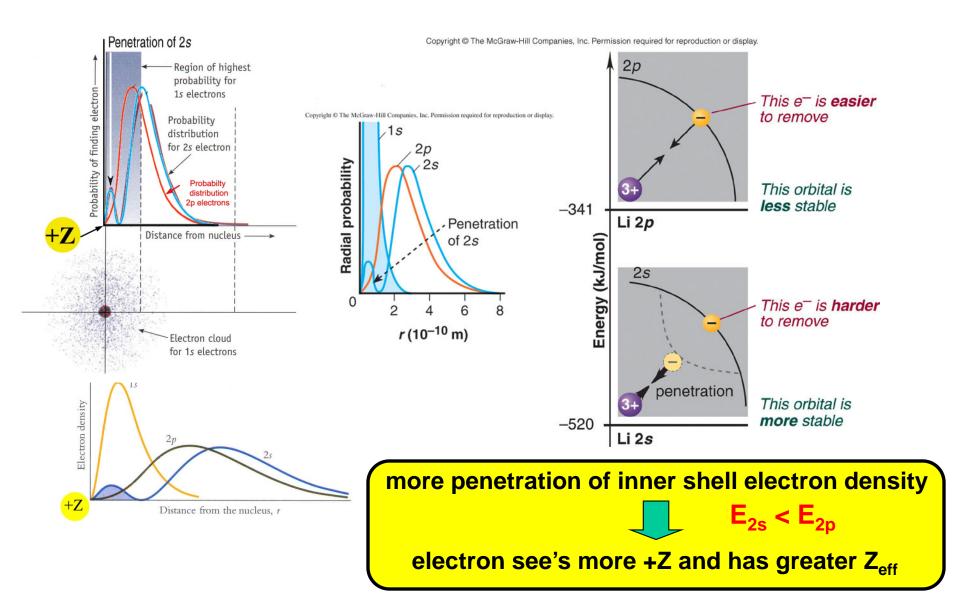
- Stern-Gerlach electron spin $+\frac{1}{2}$ and $-\frac{1}{2}$
- Pauli Exclusion Principle (PEP)
- effective nuclear charge: Z_{eff}
 - +Z_{nuclear chage} repulsion (shielding) by other electrons
 - shielding greater from electron in inner shell than electron in same shell [from electrons 'inside' or closer to nucleus]

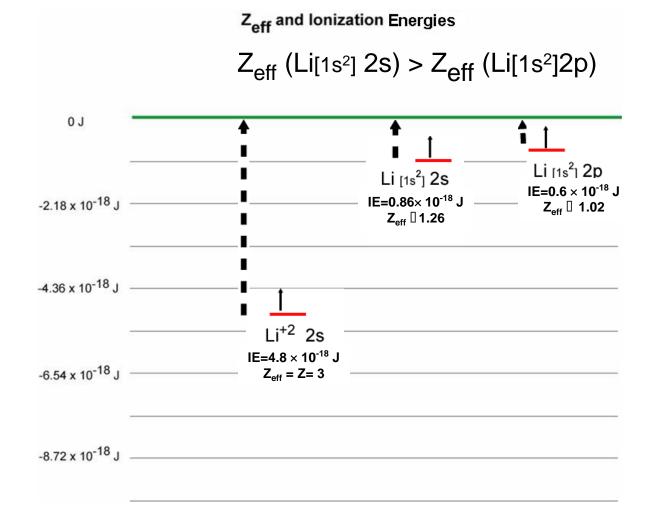

•
$$E_n \approx -\frac{m_e e^4}{8h^2 \varepsilon_0^2} \frac{Z_{eff}^2}{n^2} = -(2.18 \times 10^{-18} \text{ J}) \frac{Z_{eff}^2}{n^2}$$
 $\overline{r} \approx (5.29 \times 10^{-11} \text{ m}) \frac{n^2}{Z_{eff}}$

In 1-electron atoms (H-atom) and 1-electron ions (He⁺, Li²⁺...), a 2s and 2p orbital will have the \dots **SAME** \dots energy



now Z_{eff}


and the effect of penetration of inner shell electron density by electrons in the same shell (e.g. 2s electron vs 2p electron) Z_{eff} for 2s vs 2p: 2p and 2s have SAME energy in 1-electon ion


actual 2s electron density (one radial node; one inner maximum in radial probability)

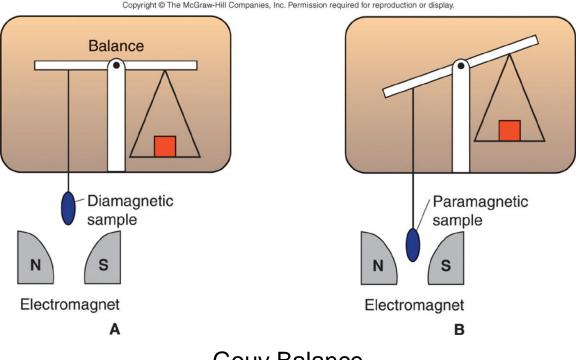
Z_{eff} for 2s vs 2p (handout fig. 12.4)

Energy of Li [1s²] 2s vs Li [1s²] 2p (HO Fig. 12.5): penetration

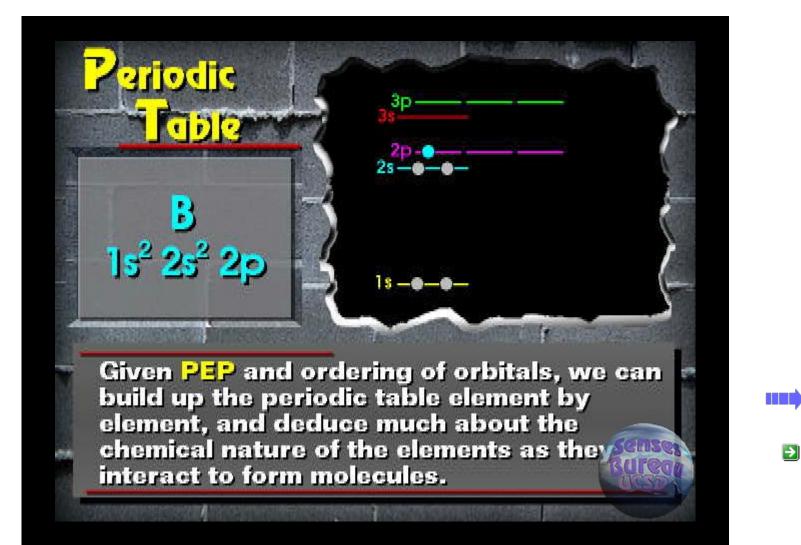
- Configurations and valence-level orbital diagrams
- Hund's rule

• 2nd row aufbau <u>fig 8.8 (Sil)</u>

Increasing Z_{eff} due to increasing penetration effects (<u>figure HO 12Z.6</u>); →


$$(Z_{eff})_{3s} > (Z_{eff})_{3p} > (Z_{eff})_{3d}$$

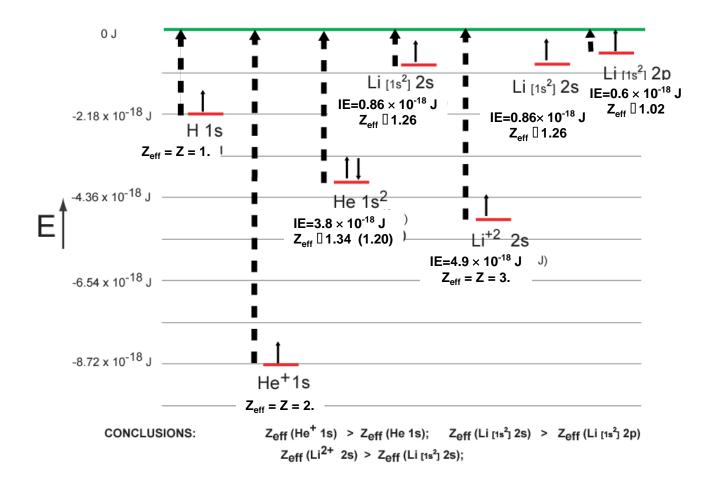
$$(E)_{3s} < (E)_{3p} < (E)_{3d}$$


- 4s vs 3d (Z_{eff} vs n)
- Orbital energy ordering <u>fig 8.6 (Silb)</u>
 (figure 8.13, Silb) →

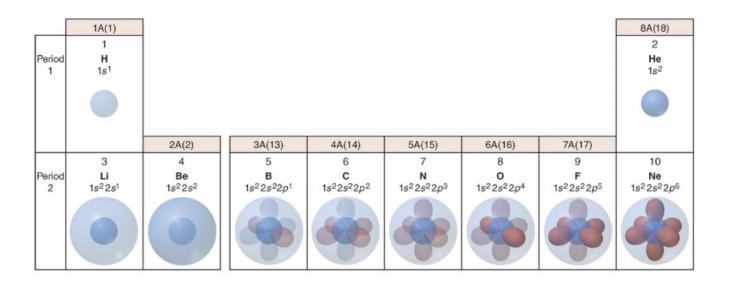
- Hund's rule
 - Energy ordering
 - Unambiguous [closed shell, 1e, (n-1)e's e.g. p¹, p⁵, d¹,d⁹]
 - Ambiguous [e.g. $p^2, p^3, p^4, d^2 \rightarrow d^8$]
- Examples (periodic table)
 - ground state
 - excited state
 - not allowed configuration
 - transition metal cations
 - "exceptions"

DiamagneticParamagnetic• pushed out of magnet• pulled into magnet• no unpaired electrons• unpaired electrons

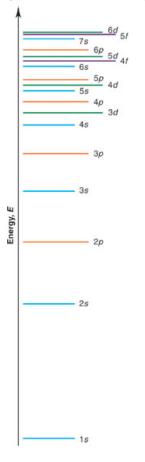
Gouy Balance



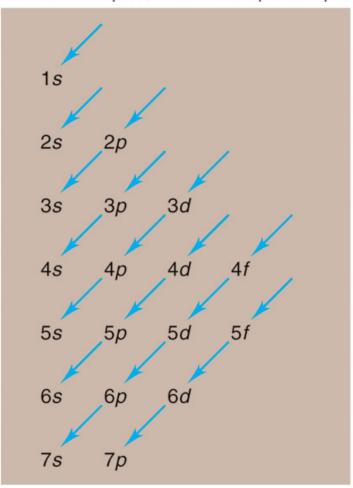
Z_{eff} and ionization potentials


Z_{eff} and Ionization Energies

Note: data refer to figures 8.3, 8.4, 8.5 Silberberg IP in J/molecule = (IP in kJ/mol x 1000 J/kJ)/(6.022 x 10^{23} molecules/mol)


Silberberg figure 8.8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

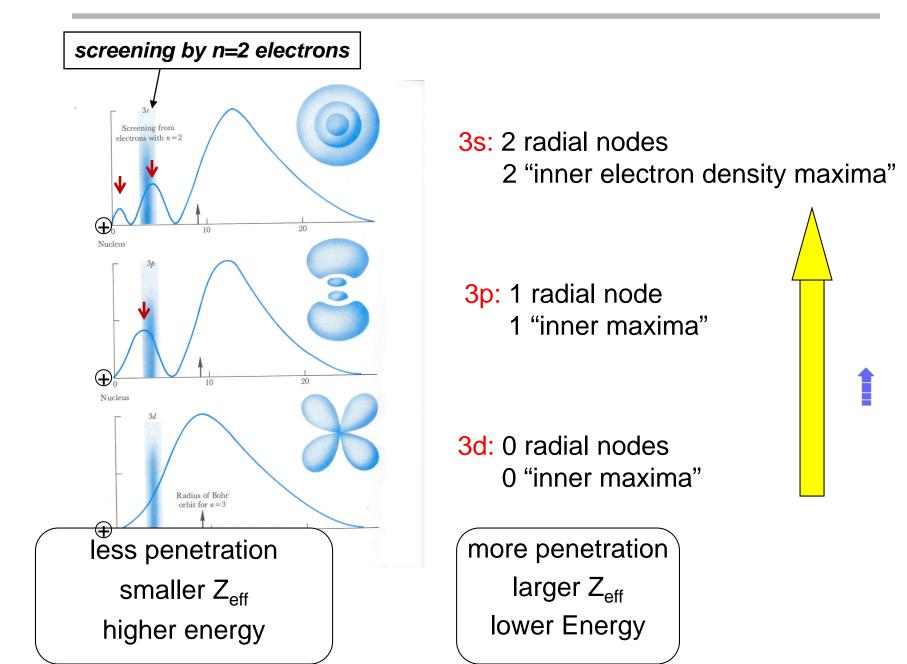

Silberberg figure 8.6

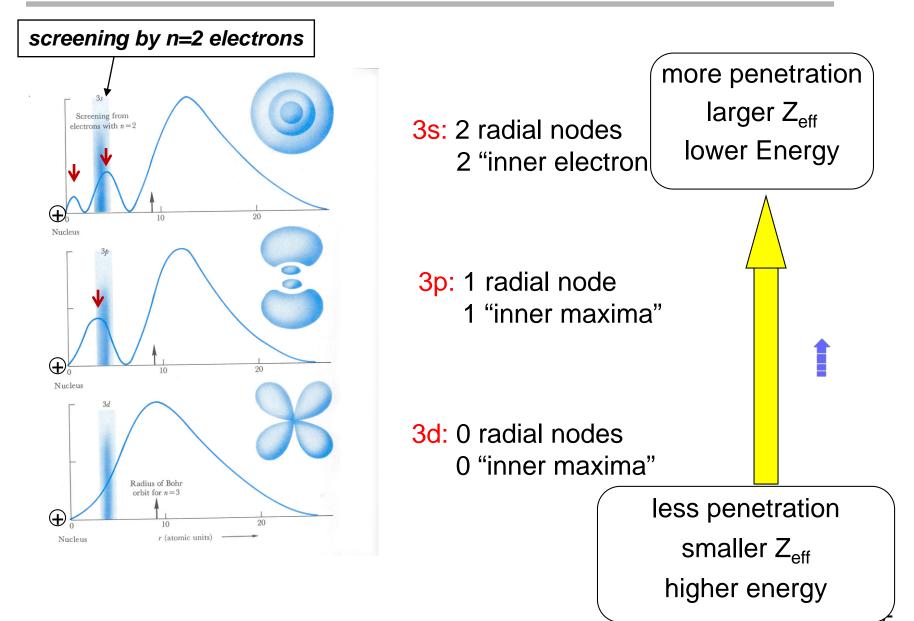
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

الالكان

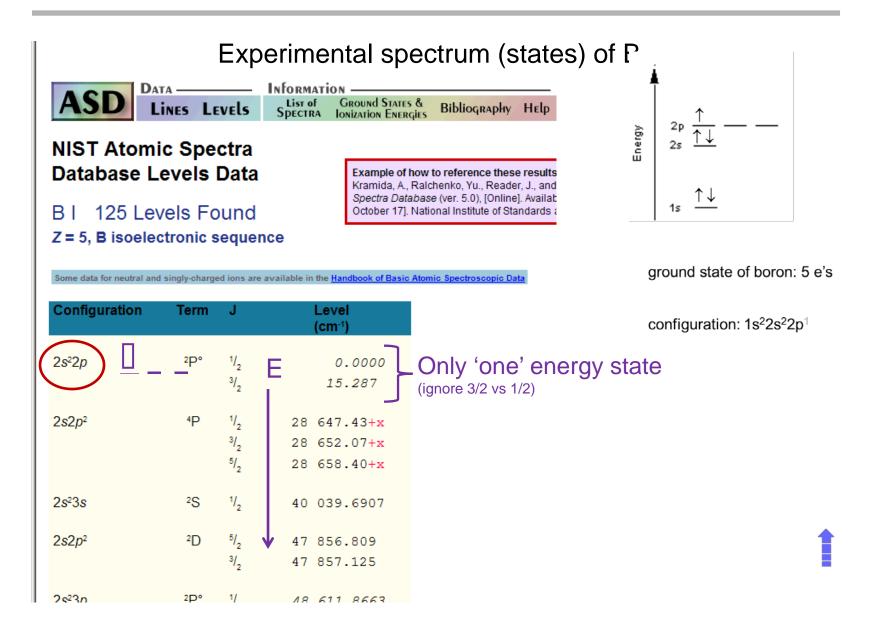
Silberberg figure 8.13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

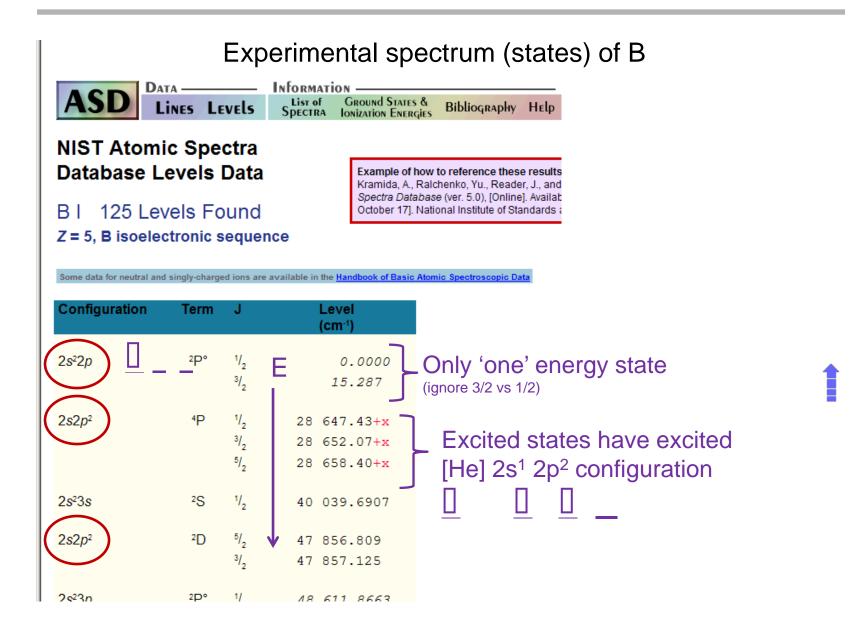

Zumdahl figure 12.29

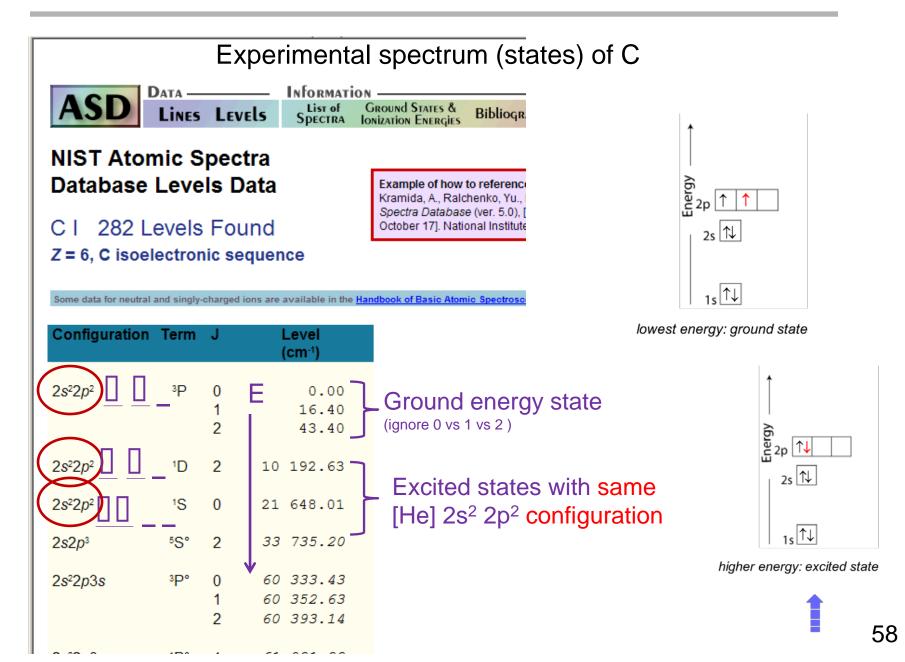

	Representative Elements			d-Transition Elements										Representative Elements					
	1A 	Group numbers															ú.	8A 10 ⁵⁰⁰⁶	
1	1 H 141	2A											3A ^{milapi}	4A sconijož.	5A	6А 111 ²⁻¹¹¹²⁻⁴	7A ******	2 He 1s ²	
Period number, highest occupied electron level ϕ .	3 Li 2s1	4 Be 25 ²											5 B 2s ² 2p ¹	6 C 2s ² 2p ²	7 N 2s ² 2p ³	8 O 2s ² 2p ⁴	9 F 2s ² 2p ⁵	10 Ne 2s ² 2p ⁶	
	11 Na 31	12 Mg 3s ²												14 Si 3s ² 3p ²	15 P 3s ² 3p ³	16 S 3s ² 3p ⁴	17 Cl 3s ² 3p ⁵	18 Ar _{3s²3p⁶}	
	19 K 41	20 Ca 45 ²	21 Sc 4s ² 3d ³	22 Ti 4s ² 3q ²	23 V 4x ² 3d ³	24 Cr -4s ¹ 3d ⁵	25 Mn 4s ² 3d?	26 Fe 4s ² 3d ⁶	27 Co 4s ² 3d ⁷	28 Ni 4s ² 3d ⁹	29 Cu 4s ¹ 3d ¹⁰	30 Zn 4s ² 3d ¹⁰	31 Ga 4s ^{24p1}	32 Ge 4s ^{24p²}	33 As _{4s²4p³}	34 Se 4s ^{24p⁴}	35 Br _{4s²4p⁵}	36 Kr 4s ^{24p6}	
	37 Rb 5r ¹	38 Sr 592	39 Y 5s ² 4d ¹	40 Zr 5s ² 4d ²	41 Nb 5s14d4	42 Mo 5s14d ⁵	43 Tc 5s14d ⁶	44 Ru _{5x14d} 9	45 Rh 5s14d8	46 Pd 4d ¹⁰	47 Ag 5s ¹ 4d ¹⁰	48 Cd 5s ^{24d10}	49 In 5s ² 5p ¹	50 Sn 5s ² 5p ²	51 Sb 5s ² 5p ³	52 Te 5s ² 5p ⁴	53 I 5s ² 5p ⁵	54 Xe 5s ² 5p ⁶	
	55 Cs 6d	56 Ba 652	57 La [#] 6s ² 5d ¹	72 Hf 4f ^{1465°5d2}	73 Ta 6s²5d3	74 W 6s ² 5d ⁴	75 Re 6425d ⁸	76 Os 6x23d%	77 Ir .6s ² 5d?	78 Pt 6415d ⁹	79 Au 615d10	80 Hg 6r ^{25d10}	81 Tl 6s ² 6p ¹	82 Pb 6s ² 6p ²	83 Bi 6s ^{26p3}	84 Po 6s ² 6p ⁴	85 At 6s26p5	86 Rn 6s²6p6	
7	87 Fr 751	88 Ra 75 ²	89 Ac** 75260	104 Rf 7s ² 6d ²	105 Db 7526d9	106 Sg 7s ^{26d4}	107 Bh 7s26d ⁵	108 Hs 75 ² 645	109 Mt 7s ² 6d7	110 Ds 7s ² 6d ⁸	111 Uuu 7,5 ¹⁶⁴¹⁰	112 Uub 7x26d10		114 Uuq 7s ^{27p²}				~~	

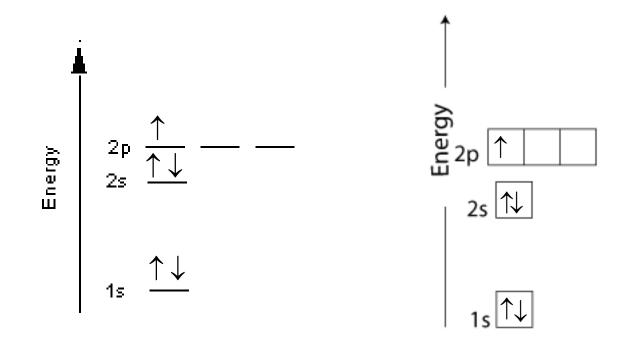
f-Transition Elements


*Lanthaniides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	6s24f15d1	6x24f35d0	6s²4f45d0	6s ² 4/ ³ 5d ⁰	6x24165d0	6s²4y75d0	6s ² 4/ ⁷ 5d ¹	6x24y95d0	64241105d9	6s ^{24f115d9}	6s ² 4/ ¹² 5d ⁰	6s249135d0	6s ^{24f145d9}	6s ² 4y ¹⁴ 5d ¹¹
**Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	75 ² 5f ⁰ 6d ²	7s²5y²6d1	7s ² 5f ³ 6d ¹	7s ² 5f ⁴ 6d ¹	7s25986d9	7s ² 5f ⁷ 6d ⁰	7s ² 5f ⁷ 6d ¹	7s25f96d9	7s ² 5/106d ⁰	75 ² 5f ¹¹ 6d ⁰	7s ² 5/ ¹² 6d ⁰	7s²5f136d0	7s ² 5f ¹⁴ 6d ⁰	7s ² 5f ¹⁴ 6d ¹

©Houghton Mifflin Company. All rights reserved.




Why B [He] 2s² 2p¹ is 'unambiguous' ground state configuration

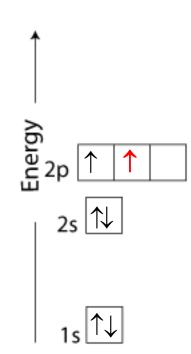

Why B [He] 2s² 2p¹ is 'unambiguous' ground state configuration

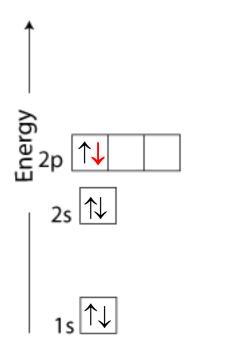
Why C [He] 2s² 2p² is 'ambiguous' ground state configuration

n=1 and n=2 energy diagram for multi-electron atoms

ground state of boron: 5 e's

configuration: $1s^22s^22p^1$ or [He] $2s^22p^1$


Hund's Rule



Friedrich Hund

for a given configuration, the lowest energy state will have the maximum number of electrons with parallel spins

carbon 6e's: $1s^22s^22p^2$ or [He] $2s^22p^2$

lowest energy: ground state

higher energy: excited state

$$E_n \approx -(2.18 \times 10^{-18} \text{ J}) \frac{Z_{eff}^2}{n^2}$$

smaller n \Rightarrow lower (more negative) energy larger $Z_{eff} \Rightarrow$ lower (more negative) energy

who wins for lower energy?

- 3d vs 4s
- n: 3 4 **3d wins for lower energy**
- Z_{eff}: smaller larger 4s wins for lower energy 0 radial nodes 3 radial nodes

and the energy winner is :

in neutral atoms Z_{eff} wins: $E_{4s} < E_{3d}$ but in positive ions (e.g. Fe³⁺) n wins: $E_{3d} < E_{4s}$ The Aufbau Principle that we have been using is extremely useful in describing electronic configurations in atoms and ions. However since it is an 'approximation' to the actual (Schrödinger) wavefunctions, exceptions may be observed.

extra stability of half- or filled-shells:

²³V: [¹⁸Ar] 4s²3d³ $\uparrow \uparrow \uparrow \uparrow = as expected$ ²⁴Cr: [¹⁸Ar] 4s²3d⁴ $\uparrow \uparrow \uparrow \uparrow \uparrow = expected$ but [¹⁸Ar] 4s¹ \uparrow 3d⁵ $\uparrow \uparrow \uparrow \uparrow \uparrow = observed$ (half-filled) ²⁸Ni: [¹⁸Ar] 4s²3d⁸ ²⁹Cu: [¹⁸Ar] 4s²3d⁹ but: ²⁹Cu: [¹⁸Ar] 4s¹3d¹⁰

half-filled

In chemistry 1B-02 you will NOT be responsible for memorizing exceptions but just to 'explain' a given exception